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The free vibration problem of unidirectional composite cylindrical helical springs is
modelled theoretically as a continuous system considering the rotary inertia, shear and
axial deformation e!ects. The "rst order shear deformation theory is employed in the
mathematical model. The 12 scalar ordinary di!erential equations governing the free
vibration behavior of cylindrical helical springs made of an anisotropic material are solved
simultaneously by the transfer matrix method. The overall transfer matrix of the helix is
computed up to any desired accuracy by using the e!ective numerical algorithm available in
the literature. The theoretical results are veri"ed with the reported values, which
were obtained theoretically and experimentally for straight beams and helical springs.
A parametric study is performed to investigate the e!ects of the number of active coils, the
helix pitch angle and material types on the "rst six natural frequencies of helical springs with
circular section and "xed}"xed ends.
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1. INTRODUCTION

Helical springs are used in various mechanisms. The primary functions of springs are to
absorb energy and mitigate shock, to apply a de"nite force or torque, to support moving
masses or isolate vibration, to indicate control load or torque, etc. In practical applications,
helical springs are in the form of cylindrical and non-cylindrical (conical, barrel, and
hyperboloidal) types. Having constant curvatures along the axis makes analysis of
cylindrical helical springs simpler than non-cylindrical helical springs.

The analytical solution to the static equations of cylindrical helical springs made of
isotropic materials was achieved by Cinemre [1], who neglected the axial and shear
deformations. In the dynamic analysis, "nding the solution in closed form is very di$cult.
This is because the equations which govern the dynamic behavior of helices become 12
simultaneously partial di!erential equations containing inertial terms.

Philips and Costello [2], Costello [3], Mottershead [4], and Berdichevsky and Sutryin
[5] worked out the non-linear behavior of helical springs. An extensive geometrical
non-linear theory was presented in Reference [5].

Experimental determination of the natural frequencies of helical springs is also somewhat
di$cult because helical springs have free vibration frequencies very close in value.

The analytical formulas for the natural frequencies associated with the axial and torsional
modes of cylindrical helical springs made of an isotropic material, which neglect the rotary
inertia, axial and shear deformation e!ects, were presented by Wahl [6]. These formulas are
valid for small pitch angle and large cylinder to wire diameter ratios. Ymldmrmm [7] presented
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322 V. YILDIRIM
analytical expressions for the "rst six natural frequencies of cylindrical helical springs made
of isotropic material with circular and rectangular sections with a maximum relative error
of 5%. This study includes the intervals of the number of active turns n"3}16, the helix
pitch angle a"5, 10, 15, 20 and 253, and the ratio of cylinder diameter to the wire diameter
D/d"4}16. The rotary inertia, the axial and shear deformation e!ects were considered in
Ymldmrmm's [7] study.

To the author's knowledge, there are only three papers [8}10] on the vibration analysis
of the cylindrical helical springs made of composite materials. The increasing usage of "bre
composite materials encompasses applications in helical springs. In order to analyze the
dynamic behavior of composite helical springs, an accurate formulation of the
mathematical model is required. The natural frequencies depend on the cross-sectional
rigidities closely [11]. To achieve the true cross-sectional rigidities, the generalized Hooke's
law must be used when considering the classical beam theory instead of adapting the plate
cross-sectional rigidities for the beam rigidities [12].

Ymldmrmm [12] presented governing equations of initially twisted elastic space rods made
of laminated composite materials. These equations are easily applicable to the static and
dynamic analysis of general space rods with variable cross-sections and curvatures by the
classical methods available in the literature. Borri et al. [13] proposed a quite general
theory for the three-dimensional cross-section analysis accounting for initial twist and
curvature of anisotropic and non-homogeneous beams. Cesnik et al. [14] o!ered an
asymptotically exact methodology based on geometrical non-linear, three-dimensional
elasticity for cross-sectional analysis of initially curved and twisted, non-homogeneous
anisotropic beams.

In this study, which is a continuation of references [8}10], the governing equations for
composite cylindrical helical springs are presented in a vectorial form based on the "rst
order shear deformation theory. It is assumed that the centroid of the cross-section and the
shear center coincide, the material is anisotropic, homogeneous, and linear. Furthermore,
warping and pre-twisting of the cross-section are neglected; the inertia moments about
normal and binormal axes attached at the mass center of the cross-section are the principal
inertia moments.

The cross-sectional rigidities utilized in this study are derived from the generalized
Hooke's law in consideration of the classical beam theory [12]. The rotary inertia, shear
and axial deformation e!ects are included in the formulation. The scalar-free vibration
equations, which are 12 simultaneous "rst order di!erential equations, are obtained by
assuming harmonic motion. These equations are solved with the help of the transfer matrix
method.

As is well known, the transfer matrix method is one of the well-established methods.
However, it has not been used widely for composite analysis [15}17]. This is because the
exact overall transfer matrix must be computed to obtain an accurate solution. The
accuracy of the overall transfer matrix obtained by using any numerical procedure is an
important issue in the transfer matrix method. In order to obtain an accurate solution of the
problem, an e!ective numerical algorithm, which was previously veri"ed for isotropic
helices [7, 18, 19], is employed for the computation of the overall transfer matrix for
composite helical springs. After verifying the results with the reported values, a through
parametric study is performed. It may be noted that in references [9}11] the transfer matrix
method was used for the discrete parameters model instead of the distributed parameters
model as studied in the present work.

Continuation of this work is expected to lead ultimately to the development of a
methodology for relating the spring's natural frequency to the design parameters for the
spring. These include geometrical as well as material parameters. Consequently, the work is
JSVI=20003168=Ravi=VVC



UNIAXIAL CYLINDRICAL HELICAL SPRINGS 323
signi"cant not only from a scienti"c point of view due to development of the related
mathematical and numerical methodology, but also the engineering point of view. This is
because the use of composite springs presents a good opportunity for design engineers in
vibration isolation as resilient members, energy storage, and power transmission under
conditions where weight and chemical resistance are primary concerns. Furthermore,
composite springs which involve an organic matrix as the bonding agent and long "bers as
the reinforcement will possess enhanced damping characteristics due to viscous damping
and possibly due to Coulomb friction.

2. FORMULATION OF THE FREE VIBRATION PROBLEM OF COMPOSITE
CYLINDRICAL HELICES

The position vector of a cylindrical helical spring, r, is given in terms of Cartesian unit
vectors (i, j, k) as follows (see Figure 1(a)):

r"xi#yj#zk"(R cos h)i#(R sin h) j#(hh)k. (1)

Here h is the horizontal angular displacement and R ("D/2) is the centerline radius of
the helix. With the helix pitch angle denoted by a, the step for unit angle of the helix, h, in
equation (1) can be written as

h"R tan a. (2)

For a space bar, the Frenet unit vectors associated with the bar axis [see Figure 1(b)] are
given as [20]

t"dr/ds,

n"(dt/ds)/(dt/ds),

b"t]n. (3)

Here t, n, and b denote the tangential, normal and binormal unit vectors respectively. For
the helical springs, the in"nitesimal length of the bar, ds, is de"ned as

ds"(dx2#dy2#dz2)(1@2)"JR2#h2dh"c dh. (4)
Figure 1. (a) Geometry of cylindrical helical spring; (b) stress resultants and Frenet co-ordinates.
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324 V. YILDIRIM
By using equations (1), (3) and (4), the relationship between Frenet co-ordinates (t, n, b)
and Cartesian unit vectors (i, j, k) is obtained in the form

t"(!cos a sin h) i#(cos a cos h)j#sin ak,

n"!cos h i!sin h j,

b"(sin a sin h) i#(!sin a cos h) j#cos ak. (5)

Frenet unit vectors are related to each other by the following relations [20]:

dt/ds"sn,

dn/ds"qb!st,

db/ds"!qn. (6)

Here s and q represent the curvature and tortuosity of a curve in space. These curvatures
reduce to the following for a cylindrical helical spring:

s"cos2 a/R"R/c2"constant, q"sin a cos a/R"h/c2"constant. (7)

By cancelling the terms for initial twist of cross-section, the free vibration equations of
space rods made of an anisotropic material are obtained in a vectorial form as [12]

dT

ds
"!ou2U,

dM

ds
#t]T"!oI

*
, u2X (i"t, n, b), (8a, b)

dU

ds
"A@T#B@M#X]t,

dX
ds

"D@M#F@T (8c, d)

where T and M are the internal force and internal moment vectors, U and X are the
displacement and rotation vectors for a point on the bar axis respectively. The density of the
material and the circular frequency (rad/s) are denoted by o and u respectively. A@, F@, B@
and D@ matrices comprise the cross-sectional rigidities for composite bars. In Ymldmrmm's
formulation [12], these matrices contain just material and cross-sectional properties. The
e!ects of s and q on the 1-D constitutive matrix that may be important in the analysis are
neglected in this study. These e!ects will be treated in later work.

For symmetric section and 03 "bers, F@"B{T"0 and

A@"

1/A
11

0 0

0 1/A
22

0

0 0 1/A
33

, D@"

1/D
11

0 0

0 1/D
22

0

0 0 1/D
33

, (9)

For unidirectional layers, the elements of extensional and bending sti!ness matrices,
A and D, are obtained as

A
11
"Q1

11
A, A

22
"Q1

22
A, A

33
"Q1

33
A,

D
11
"Q1

33
I
b
#Q1

22
I
n
, D

22
"Q1

11
I
n
, D

33
"Q1

11
I
b
, (10)
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UNIAXIAL CYLINDRICAL HELICAL SPRINGS 325
where A is the undeformed cross-sectional area of the cross-section, I
n
and I

b
are the inertia

moments about the normal and binormal axes. Q1
ij

are the elements of the reduced sti!ness
matrix which can be obtained in terms of the elements of general three-dimensional sti!ness
and compliance matrices, C and S, respectively, as [12]

Q1
11
"C

11
#(C

12
S
12
#C

13
S
13

)/S
11

, Q1
22
"C

66
, Q1

33
"C

55
, (11)

and

Mp6
1
, q6

12
, q6

31
NT"Q1 Me6

1
, c6

12
, c6

31
NT, (12)

where (1, 2, 3) axes coincide with the Frenet co-ordinates.
For a three-dimensional body the stress}strain relationship, p}e, is assumed to be in the

form

Mp
1
, p

2
, q

3
, q

23
, q

31
, q

12
NT"CMe

1
, e

2
, e

3
, c

23
, c

31
, c

12
NT. (13)

The scalar components of the vector quantities in equations (8) are [see Figure 1(b)].

T"¹
t
t#¹

n
n#¹

b
b, M"M

t
t#M

n
n#M

b
b, T";

t
t#;

n
n#;

b
b,

X"X
t
t#X

n
n#X

b
b, (14)

By substituting equations (6), (9) and (14) into equations (8), the scalar-free vibration
equations of a cylindrical helical spring made of unidirectional composite layers are
obtained in (t, n, b) reference frame as follows:

d;
t

ds
"s;

n
#A@

11
¹
t
,

d;
n

ds
"!s;

t
#q;

b
#X

b
#k@A@

22
¹
n
,

d;
b

ds
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n
!X

n
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33
¹

b
,

dX
t

ds
"sX

n
#D@

11
M

t
,

dX
n

ds
"!sX

t
#qX

b
#D@

22
M

n
,

dX
b

ds
"!qX

n
#D@

33
M

b
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d¹
t

ds
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n
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d¹
n

ds
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b
!s¹

t
!AM u2;

n
,

d¹
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"!q¹

n
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b
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dM
t

ds
"sM

n
!IM

1
nu2X

t

dM
n

ds
"qM

b
!sM

t
#¹

b
!I1

2
u2X

n
,

dM
b

ds
"!qM

n
!¹

n
!I1

3
u2X

b
. (15)

Here k@ represents the shear correction factor. Although equations (15) can be used for any
doubly symmetric cross-section, a solid circular section is considered in this study and
kA"1)1 is assumed [21]. For the circular section, the other quantities in equations (15) are

AM "oA, I1
2
"I1

3
"ond4/64, I1

1
"2I1

2
. (16)

3. SOLUTION BY THE TRANSFER MATRIX METHOD

By referring to equations (15), the state vector can be de"ned as follows

Z(s)"

;
t
;
n
;
b

X
t

X
n

X
b

¹
t

¹
n

¹
b

M
t

M
n

M
b

.
(17)

By using this de"nition, equations (15) can be expressed in a matrix notation as

dZ(s)/ds"DoZ (s), (18)

where Do is the dynamic di!erential matrix. In the transfer matrix method, the solution to
equation (18) is given as [22]

Z(s)"FZ (0) (19)

where Z(0) is the state vector at s"0. In this study, a series expression of the overall transfer
matrix obtained by the Cayley-Hamilton theorem is utilized [7, 18, 19] as follows

F(s)"
11
+
k/0

U
k
(s)Dok . (20)

Numerical computation of the overall transfer matrix in an accurate manner is a crucial
step in the transfer matrix method. The number of terms from the in"nite series U

k
(s), which

can be considered in the computation determines the accuracy of the solution. The
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numerical algorithm developed by Ymldmrmm [7, 18, 19] allows utilization of equation (20) with
a variable number of terms depending on the degree of required accuracy for large helix
angles, D/d ratios and the number of active turns. This algorithm, which is restricted to uni-
directional (0 or 903) and cross-ply laminates, is also examined for the free vibration of circular
composite bars and straight composite beams [23, 24]. For angle-ply laminates, the overall
transfer matrix must be obtained by di!erentiating the free vibration equation set [12].

After accurate computation of all U
k
(s) functions, the frequency equation can be obtained

from the boundary conditions given at both ends (s"0 and s"2nnc"2nnR/cosa with
n" being the number of active turns) by using equation (19). The boundary conditions for
clamped end are: ;

t
" ;

n
" ;

b
"0 and X

t
" X

n
" X

b
"0.

If the transfer matrix consists of sixteen sub-matrices, Equation (19) is rewritten as follows

U

X

T

M s"2nnR/cosa

"

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
9

F
10

F
11

F
12

F
13

F
14

F
15

F
16

U

X

T

M s"0

. (21)

Thus, the eigenvalue equation for "xed}"xed ends reduces to the following

C
0

0D s"2nnR/cosa
"C

F
3

F
7

F
4

F
8
DC

T

MD
s/0

. (22)

In this study, the free vibration frequencies are obtained by the method of searching
determinant. After attributing numerical values to the natural frequency, the overall
transfer matrix is computed. The values making the determinant zero are the natural
frequencies of the helix. All numerical computations were performed by using the
double-precision arithmetic. Mode shapes are not considered in this study. The procedure
for determining mode shapes is available in reference [16].

4. NUMERICAL EXAMPLES

First of all, a cantilevered straight beam made of a unidirectional composite material is
examined to check the accuracy of the present frequencies. The material and cross-sectional
properties of the beam are given as follows: G

23
"2)54 GPa, E

1
"129 GPa,

E
2
"E

3
"9)39 GPa, G

12
"G

13
"4)3 GPa, l

12
"0)3, kA"1)2, o"1551)47 kg/m3,

width"1)27 cm, thickness"0)317 cm, length/thickness"60. The fundamental natural
frequencies for the out-of-plane bending oscillations are given in Table 1. A good
TABLE 1

Fundamental frequencies (in Hz) of cantilevered straight beam with
rectangular cross-section

Fiber directions

03 903

Abarcar and Cunni! [15] 126)5 35)5
(experimental)

Hodges et al. [11] 128)94 34)858
("nite element)

Present 128)62 34)768
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TABLE 2

¹he ,rst six natural frequencies (Hz) of a helical spring made of an isotropic material.
(a"8)57443, D/d"10, l"0)3, d"1 mm, R"5 mm, n"7)6, o"7900 kg/m3,

E"2)06]1011 N/m2)

Mottershead Mottershead Pearson Xiong and Present
(experiment) ("nite element) (transfer Tabarrok (transfer

[25] [25] matrix) ("nite element) matrix)
[26] [27]

u
1

391 396 395 395 394
u

2
391 397 398 398 396

u
3

459 469 456 464 463
u

4
528 532 518 528 526

u
5

878 887 860 868 864
u

6
878 900 875 881 877

Figure 2. Section of uniaxial composite helical springs.
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agreement is observed with the theoretical and experimental results reported in the
literature.

As a second example, a helical spring made of an isotropic material is examined. The "rst
six natural frequencies are presented in Table 2. The agreement with previously published
results is very good.

After verifying the validity of the present results, a dimensionless parametric study of a 03
unidirectional composite cylindrical helical spring with "xed}"xed ends is performed (see
Figure 2). The e!ects of the number of active turns, the helix pitch angle and the material
types on the "rst six natural frequencies for D/d"10 are investigated. The material
properties used for comparison are given in Table 3. The dimensionless frequency is de"ned
as follows:

u6 "uJo AR4/(E
1
I1
2
) . (23)

The variations of the frequencies with the chosen vibrational parameters are shown in
Figures 3 and 4. As observed from Figures 3 and 4, the natural frequencies decrease with
increasing helix pitch angles for all types of materials. This is due to an increase in the total
JSVI=20003168=Ravi=VVC



TABLE 3

¹he transversely isotropic material properties used in this study.

Carbon-epoxy1 Carbon-epoxy2
(AS4/3501-6) (T300/N5208)

E
1

(GPa) 144)8 181)0
E
2

(GPa) 9)65 10)3
G

12
(GPa) 4)14 7)17

G
23

(GPa) 3)45 3)433
o (kg/m3) 1389)23 1600)0

l
12

0)3 0)28

Figure 3. Variation of the "rst six natural dimensionless frequencies with the number of active turns, and
material types (a"helix pitch angle"53).
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length of the helix (¸"2nnR/cosa). If the number of active turns increases, the same result
is encountered. Although two materials have similar free vibration characteristics, the
carbon-epoxy2 (graphite-epoxy) material (T300/N5208) gives the highest frequencies.
JSVI=20003168=Ravi=VVC



Figure 4. Variation of the "rst six natural dimensionless frequencies with the number of active turns, and
material types (a"helix pitch angle"253).
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The formulation presented in this work has taken the e!ects of axial and shear
deformations, and rotatory inertia into account. These e!ects are presented in Tables 4 and
5 for carbon-epoxy2 material. As can be observed from the tables, neglecting the rotatory
inertia, axial and shear deformation e!ects causes an increase in natural frequencies. The
e!ect of the shear deformation is more signi"cant than others. If the D/d ratios and the
number of active turns decrease the e!ects of the rotatory inertia, axial and shear
deformation become signi"cant especially for the higher frequencies.

5. DISCUSSION AND CONCLUSION

As is well known, manufacturing of unidirectional composite helices is less complicated
than that of laminated ones. Moreover, helical springs used in practice are mostly
manufactured with circular sections without initial twist. In contrast to the helical springs,
initial twist is considered for the statical or dynamical analysis of rods like rotor blades.
Thus, the linear free vibration of 03 unidirectional composite helices with circular sections is
considered in the present work to support the theory presented here by an experimental
JSVI=20003168=Ravi=VVC



TABLE 4

E+ects of the axial and shear deformation, and the rotatory inertia on the natural frequencies
(in Hz) of carbon-epoxy2 material (d"1 mm, a"53, D/d"5) (AD"axial deformation,

SD"shear deformation, RI"rotatory inertia)

No. of active Including Excluding Excluding Excluding
turns AD, SD, AD e!ect SD e!ect AD and SD
(n) and RI e!ects

e!ects

u
1

13344)82 13356)80 13932)29 13950)85
u

2
31418)87 31490)81 38012)82 38204)64

u
3 1

36954)71 36961)88 39333)22 39345)25
u

4
68439)02 69024)64 89818)55 89842)87

u
5

78187)39 78199)79 106144)8 108222)7
u

6
127977)0 129470)9 163991)1 164090)5

u
1

2321)33 2321)34 2345)50 2345)51
u

2
4470)94 4471)06 4515)95 4516)07

u
3 4

5158)32 5159)75 5220)88 5222)26
u

4
5594)30 5598)47 5712)45 5716)58

u
5

6277)12 6277)42 6324)61 6324)89
u

6
6916)74 6918)50 7004)90 7007)01

u
1

1167)39 1167)39 1179)73 1179)74
u

2
2097)16 2098)08 2125)68 2126)62

u
3 8

2104)31 2105)33 2133)83 2134)88
u

4
2320)17 2320)18 2344)64 2344)65

u
5

3431)79 3431)84 3466)82 3466)87
u

6
4044)55 4045)72 4092)95 4094)08

u
1

777)67 777)67 785)82 785)83
u

2
1043)70 1044)01 1052)59 1052)91

u
3 12

1049)48 1049)77 1058)69 1058)99
u

4
1554)69 1554)69 1571)11 1571)12

u
5

2316)11 2316)14 2340)04 2340)07
u

6
2375)42 2376)26 2402)11 2402)96
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study which will be performed in the near future. The eccentricity (shift in the neutral axis)
due to the initial curvature may also be neglected [25}28] for circular or square sections.
This e!ect commonly becomes signi"cant for helical bars with wide rectangular sections,
e.g., helical staircases [28]. In this study, the free vibration analysis of composite helical
springs having 03 unidirectional "bers along the helix axis is studied based on the transfer
matrix method. The rotary inertia, and the axial and shearing deformation terms are
considered in the formulation. The e!ects of the number of active turns (n"4}12), the helix
pitch angle (a"53 and a"253) and the types of Carbon-epoxy materials are investigated.
The "rst six free vibration frequencies of composite cylindrical helical springs with circular
section and clamped}clamped ends are considered and the results are presented in
non-dimensional graphical forms for D/d"10.
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TABLE 5

E+ects of the axial and shear deformation, and the rotatory inertia on the natural frequencies
(in Hz) of carbon-epoxy2 material (d"1 mm, a"53, D/d"10) (AD"Axial deformation,

SD"shear deformation, RI"rotatory inertia)

No. of active Including Excluding Excluding Excluding
turns AD, SD, AD e!ect SD e!ect AD and SD
(n) and RI e!ects

e!ects

u
1

3456)36 3457)37 3497)59 3498)92
u

2
8986)25 8995)26 9555)98 9568)01

u
3 1

9883)83 9884)50 10057)58 10058)39
u

4
22561)67 22563)02 23564)75 23566)48

u
5

23154)79 23241)29 27004)00 27136)79
u

6
41444)57 41449)11 44879)97 44887)24

u
1

584)97 584)97 586)50 586)50
u

2
1126)87 1126)88 1129)71 1129)72

u
3 4

1305)87 1305)96 1309)82 1309)91
u

4
1425)17 1425)43 1432)61 1432)87

u
5

1581)20 1581)22 1584)20 1584)22
u

6
1750)18 1750)31 1756)04 1756)18

u
1

294)18 294)18 294)96 294)96
u

2
531)22 531)28 533)05 533)11

u
3 8

532)54 532)61 534)42 534)48
u

4
584)72 584)72 586)27 586)27

u
5

864)85 864)85 867)06 867)07
u

6
1024)57 1024)65 1027)62 1027)68
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